Linear Algebra Methods in Combinatorics

Arjun Khandelwal, Joshua Xiong

Mentor: Chiheon Kim

MIT-PRIMES Reading Group

May 17, 2015

There are *n* inhabitants of **Even/Odd**town numbered 1, ... n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

What is the maximum number of clubs that can be formed?

There are *n* inhabitants of **Even/Odd**town numbered 1, ... n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

What is the maximum number of clubs that can be formed?

 $2^{\lfloor n/2 \rfloor}$.

There are *n* inhabitants of **Even/Odd**town numbered 1, ... n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members
- No two clubs have identical membership

n.

What is the maximum number of clubs that can be formed?

 $2^{\lfloor n/2 \rfloor}$.

Introduction

Vector space

Set of vectors V over a field F.
Example: R² is a plane
Dot product / inner product
If v₁ = (a₁,..., a_n) and v₂ = (b₁,..., b_n), then

$$v_1 \cdot v_2 = a_1b_1 + a_2b_2 + \ldots a_nb_n$$

Introduction

Basis

A minimal set of vectors B that can be used to represent any vector v in a vector space V as the sum of scalar multiples of the elements in B.

Dimension

Maximum number of linearly independent vectors in a vector space

Introduction

Linear independence

• Vectors v_1, \ldots, v_m are linearly independent if

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_m \mathbf{v}_m = \mathbf{0} \implies \lambda_i = \mathbf{0} \quad \forall i$$

Theorem (Linear Algebra Bound)

If $v_1, \ldots, v_m \in \mathbb{F}^n$ are linearly independent, $m \leq n$.

Proof for Oddtown:

Each club can be associated with an incidence vector: $v_i = (a_1, ..., a_n)$, where $a_i = 1$ if person *i* is a club member.

Note that v_i ⋅ v_j gives the intersection size of the vectors
 v_i ⋅ v_j = 0 iff i ≠ j

Theorem

The incidence vectors are linearly independent in \mathbb{F}_2

Suppose
$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0$$

$$v_i \cdot (\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n) = 0$$

$$\lambda_i v_i \cdot v_i = 0 \implies \lambda_i = 0$$

Polynomial Independence Criterion

The space of polynomials with degree $\leq d$ over a field \mathbb{F} is a vector space like any other. For a fixed d (in the single-variable case), take as a basis $1, x, x^2, \ldots, x^d$.

Theorem

Given polynomials $f_1, f_2, ..., f_m$ over a field \mathbb{F} with elements of \mathbb{F} $x_1, x_2, ..., x_m$ such that

$$f_i(x_i) \neq 0 \iff i = j$$

the f_i are linearly independent.

Polynomial Independence Criterion Proof

- Suppose $\lambda_1, \lambda_2, ..., \lambda_m$ are scalars such that $\lambda_1 f_1(x) + \lambda_2 f_2(x) + ... + \lambda_m f_m(x) = 0$
- For an arbitrary $1 \le j \le m$, let $x = x_j$

• As
$$f_i(x_j) = 0$$
 if $i \neq j$, we are left with $\lambda_j f_j(x_j) = 0$

• As
$$f_i(x_i) \neq 0$$
, $\lambda_j = 0$

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem

Theorem

Let p be a prime number and L a set of s elements of \mathbb{Z}_p . Suppose $F = \{A_1, A_2, \dots, A_m\}$ is a family of subsets of [n] such that the following conditions hold.

$$|A_i| \mod p \notin L$$

$$\blacksquare |A_i \cap A_j| \mod p \in L \text{ if } i \neq j$$

Then

$$m \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{1} + \binom{n}{0}$$

Note that setting P = 2 and $L = \{0\}$ gives us the (slightly worse) bound of $m \le n + 1$ for the Oddtown problem.

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem Proof

• Consider a polynomial G(x, y), with $x, y \in \mathbb{F}_p^n$.

• We set
$$G(x, y) = \prod_{\ell \in L} (x \cdot y - \ell)$$

- Now consider the *n*-variable polynomials $f_i(a) = G(x_i, a)$, where x_i is the incidence vector corresponding to A_i .
- Note that $f_i(x_j) \neq 0 \iff i = j$; thus, the f_i are linearly independent by our previous proposition.

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem Proof (Cont.)

- Still need to find a basis for the polynomials $G(x_i, a)$
- Each term in the expansion will be of the form $ca_1^{e_1}a_2^{e_2}\ldots a_n^{e_n}$, with c constant and $e_1 + e_2 + \cdots + e_n \leq s$
- Thus, we have $m \leq \binom{n+s}{n}$
- Using the technique of multilinearization, we can obtain the better bound $m \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{1} + \binom{n}{0}$

Nonuniform Modular Ray-Chaudhuri Wilson Theorem A Corollary

Corollary

Let L be a set of s integers and F a family of k-element subsets of a set of n elements with all pairwise intersection sizes in L . Then,

$$|F| \leq \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{1} + \binom{n}{0}$$

As the size of the pairwise intersections is at most k - 1 (as F is a k-uniform family), take a prime p > k and apply the Nonuniform Modular Ray-Chaudhuri-Wilson Theorem.

Applications to Ramsey Graphs

Introduction

Graph Theory Basics

- A graph G consists of a vertex set V and an edge set E
- An *independence set* is a set of vertices of which no two members have an edge between them
- A *clique* is a set of vertices of which any two members have an edge between them

Ramsey Theory

- An *r*-Ramsey graph is a graph on *n* vertices with no clique or independent set of size $\geq r$.
- Question: given a certain r, how large can we make n?

Applications to Ramsey Graphs Explicit Construction

We consider a graph G on $\binom{n}{p^2-1}$ vertices, with $n > 2p^2$, where we associate each vertex V_i with a $p^2 - 1$ -subset A_i of [n]. V_i and V_i are adjacent iff $|A_i \cap A_i| \neq -1 \mod p$.

Theorem

G is a
$$(2\binom{n}{p-1}+1)$$
-Ramsey graph on $\binom{n}{p^2-1}$ vertices.

Applications to Ramsey Graphs Explicit Construction

Clique Size

- Assume $F = \{B_1, B_2, ..., B_m\}$ is the vertex set of a clique
- F is a family of k-element subsets of n elements
- F satisfies the conditions of the Modular RCW-theorem with $L = \{0, 1, 2, ..., p 2\}$ and s = p 1 $|F| \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{1} + \binom{n}{0} \leq 2\binom{n}{p-1}$

Applications to Ramsey Graphs Explicit Construction

Independent Set Size

- Assume $F = \{B_1, B_2, ..., B_m\}$ is the vertex set of an independent set
- F is a family of k-element subsets of n elements
- *F* satisfies the conditions of the corollary of the Modular RCW-theorem with $L = \{p 1, 2p 1, ..., p^2 p 1\}$ and s = p 1.

•
$$|F| \le {n \choose s} + {n \choose s-1} + \dots + {n \choose 1} + {n \choose 0} \le 2{n \choose p-1}$$

Applications to Ramsey Graphs

Conclusion

Corollary

Let $\omega(t) = \frac{\ln t}{4 \ln \ln t}$. Then, for every $\epsilon > 0$ one can construct a *t*-Ramsey graph on more than

 $t^{(1-\epsilon)\omega(t)}$

- We have just constructed a Ramsey graph of size superpolynomial in t – this is currently the best known bound
- The emphasis in this problem is on explicit constructibility rather than existence
- Still an open problem to figure out how to improve the bound

Acknowledgements

Special thanks to:

- Our mentor Chiheon Kim, for an extraordinary amount of patience, knowledge, and time
- The MIT-PRIMES Program, Head Mentor Dr. Khovanova, Dr. Gerovitch, and Prof. Etingof for an excellent opportunity
- Our families for perpetual support