Linear Algebra Methods in Combinatorics

Arjun Khandelwal, Joshua Xiong

Mentor: Chiheon Kim
MIT-PRIMES Reading Group

May 17, 2015

Eventown and Oddtown

There are n inhabitants of Even/Oddtown numbered 1, ...n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

What is the maximum number of clubs that can be formed?

Eventown and Oddtown

There are n inhabitants of Even/Oddtown numbered 1, ...n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

What is the maximum number of clubs that can be formed?

$$
2^{\lfloor n / 2\rfloor} .
$$

Eventown and Oddtown

There are n inhabitants of Even/Oddtown numbered 1, ...n. They are allowed to form clubs according to the following rules:

- Each club has an even number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

- Each club has an odd number of members
- Each pair of clubs share an even number of members

■ No two clubs have identical membership

What is the maximum number of clubs that can be formed?

$$
2^{\lfloor n / 2\rfloor} .
$$

n.

Introduction

Vector space
■ Set of vectors V over a field \mathbb{F}.
Example: \mathbb{R}^{2} is a plane
Dot product / inner product
\square If $v_{1}=\left(a_{1}, \ldots, a_{n}\right)$ and $v_{2}=\left(b_{1}, \ldots, b_{n}\right)$, then

$$
v_{1} \cdot v_{2}=a_{1} b_{1}+a_{2} b_{2}+\ldots a_{n} b_{n}
$$

Introduction

Basis

- A minimal set of vectors B that can be used to represent any vector \mathbf{v} in a vector space V as the sum of scalar multiples of the elements in B.

Dimension
■ Maximum number of linearly independent vectors in a vector space

Introduction

Linear independence
■ Vectors v_{1}, \ldots, v_{m} are linearly independent if

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{m} v_{m}=0 \Longrightarrow \lambda_{i}=0 \quad \forall i
$$

Theorem (Linear Algebra Bound)

If $v_{1}, \ldots, v_{m} \in \mathbb{F}^{n}$ are linearly independent, $m \leq n$.

Eventown and Oddtown

Proof for Oddtown:

- Each club can be associated with an incidence vector: $v_{i}=\left(a_{1}, \ldots, a_{n}\right)$, where $a_{i}=1$ if person i is a club member.
■ Note that $v_{i} \cdot v_{j}$ gives the intersection size of the vectors
- $v_{i} \cdot v_{j}=0$ iff $i \neq j$

Theorem

The incidence vectors are linearly independent in \mathbb{F}_{2}
■ Suppose $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0$
■ $v_{i} \cdot\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}\right)=0$
■ $\lambda_{i} v_{i} \cdot v_{i}=0 \Longrightarrow \lambda_{i}=0$

Polynomial Independence Criterion

The space of polynomials with degree $\leq d$ over a field \mathbb{F} is a vector space like any other.
For a fixed d (in the single-variable case), take as a basis $1, x, x^{2}, \ldots, x^{d}$.

Theorem

Given polynomials $f_{1}, f_{2}, \ldots, f_{m}$ over a field \mathbb{F} with elements of \mathbb{F} $x_{1}, x_{2}, \ldots, x_{m}$ such that

$$
f_{i}\left(x_{i}\right) \neq 0 \Longleftrightarrow i=j
$$

the f_{i} are linearly independent.

Polynomial Independence Criterion

■ Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are scalars such that $\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\ldots+\lambda_{m} f_{m}(x)=0$
■ For an arbitrary $1 \leq j \leq m$, let $x=x_{j}$
■ As $f_{i}\left(x_{j}\right)=0$ if $i \neq j$, we are left with $\lambda_{j} f_{j}\left(x_{j}\right)=0$
■ As $f_{i}\left(x_{i}\right) \neq 0, \lambda_{j}=0$

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem

Theorem

Let p be a prime number and L a set of s elements of \mathbb{Z}_{p}. Suppose $F=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ is a family of subsets of $[n]$ such that the following conditions hold.

- $\left|A_{i}\right| \bmod p \notin L$
- $\left|A_{i} \cap A_{j}\right| \bmod p \in L$ if $i \neq j$

Then

$$
m \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{1}+\binom{n}{0}
$$

Note that setting $P=2$ and $L=\{0\}$ gives us the (slightly worse) bound of $m \leq n+1$ for the Oddtown problem.

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem

- Consider a polynomial $G(x, y)$, with $x, y \in \mathbb{F}_{p}^{n}$.
- We set $G(x, y)=\prod_{\ell \in L}(x \cdot y-\ell)$

■ Now consider the n-variable polynomials $f_{i}(a)=G\left(x_{i}, a\right)$, where x_{i} is the incidence vector corresponding to A_{i}.
■ Note that $f_{i}\left(x_{j}\right) \neq 0 \Longleftrightarrow i=j$; thus, the f_{i} are linearly independent by our previous proposition.

Nonuniform Modular Ray-Chaudhuri-Wilson Theorem

- Still need to find a basis for the polynomials $G\left(x_{i}, a\right)$

■ Each term in the expansion will be of the form $c a_{1}^{e_{1}} a_{2}^{e_{2}} \ldots a_{n}^{e_{n}}$, with c constant and $e_{1}+e_{2}+\cdots+e_{n} \leq s$

- Thus, we have $m \leq\binom{ n+s}{n}$
- Using the technique of multilinearization, we can obtain the better bound $m \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{1}+\binom{n}{0}$

Nonuniform Modular Ray-Chaudhuri Wilson Theorem

A Corollary

Corollary

Let L be a set of s integers and F a family of k-element subsets of a set of n elements with all pairwise intersection sizes in L.
Then,

$$
|F| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{1}+\binom{n}{0}
$$

As the size of the pairwise intersections is at most $k-1$ (as F is a k-uniform family), take a prime $p>k$ and apply the Nonuniform Modular Ray-Chaudhuri-Wilson Theorem.

Applications to Ramsey Graphs

Introduction

Graph Theory Basics
■ A graph G consists of a vertex set V and an edge set E

- An independence set is a set of vertices of which no two members have an edge between them
- A clique is a set of vertices of which any two members have an edge between them

Ramsey Theory

- An r-Ramsey graph is a graph on n vertices with no clique or independent set of size $\geq r$.

■ Question: given a certain r, how large can we make n ?

Applications to Ramsey Graphs

Explicit Construction

We consider a graph G on $\left(\begin{array}{c}p^{2}-1\end{array}\right)$ vertices, with $n>2 p^{2}$, where we associate each vertex V_{i} with a $p^{2}-1$-subset A_{i} of $[n]$. V_{i} and V_{j} are adjacent iff $\left|A_{i} \cap A_{j}\right| \neq-1 \bmod p$.

Theorem

G is a $\left(2\binom{n}{p-1}+1\right)$-Ramsey graph on $\binom{n}{p^{2}-1}$ vertices.

Applications to Ramsey Graphs

Explicit Construction

Clique Size

- Assume $F=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ is the vertex set of a clique

■ F is a family of k-element subsets of n elements
■ F satisfies the conditions of the Modular RCW-theorem with $L=\{0,1,2, \ldots, p-2\}$ and $s=p-1$

- $|F| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{1}+\binom{n}{0} \leq 2\binom{n}{p-1}$

Applications to Ramsey Graphs

Explicit Construction

Independent Set Size

- Assume $F=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ is the vertex set of an independent set
■ F is a family of k-element subsets of n elements
■ F satisfies the conditions of the corollary of the Modular RCW-theorem with $L=\left\{p-1,2 p-1, \ldots, p^{2}-p-1\right\}$ and $s=p-1$.
- $|F| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{1}+\binom{n}{0} \leq 2\binom{n}{p-1}$

Applications to Ramsey Graphs

Conclusion

Corollary
Let $\omega(t)=\frac{\ln t}{4 \ln \ln t}$. Then, for every $\epsilon>0$ one can construct a t-Ramsey graph on more than

$$
t^{(1-\epsilon) \omega(t)}
$$

- We have just constructed a Ramsey graph of size superpolynomial in t-this is currently the best known bound
- The emphasis in this problem is on explicit constructibility rather than existence
- Still an open problem to figure out how to improve the bound

Acknowledgements

Special thanks to:
■ Our mentor Chiheon Kim, for an extraordinary amount of patience, knowledge, and time

- The MIT-PRIMES Program, Head Mentor Dr. Khovanova, Dr. Gerovitch, and Prof. Etingof for an excellent opportunity
- Our families for perpetual support

